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➤ Model: Unknown graph G, with a multiset 
of traces. A trace is a random induced 
subgraph, obtained after each vertex of G 
is deleted with probability .q = 0.5

?

➤ Big Question: How many traces do we 
need in order to reconstruct G with high 
probability?

➤ Of course, this is easy if the nodes were 
labeled, but we are assuming we don’t 
know which nodes were retained.
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➤ Arbitrary Graphs:

Some graphs require  traces (matches trivial upper bound).2Ω(n)

➤ Random Graphs:

For almost all graphs,  traces suffice.O(log n)

This is optimal.

➤ Adjacency Matrices:

For arbitrary graphs,  traces suffice.2O(n2/3)

For sparse graphs,  traces suffice.2O(n1/3)
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ARBITRARY GRAPHS: A LOWER BOUND
Theorem.  traces are required to learn an arbitrary graph with probability 0.9.2Ω(n)

Proof. Consider distinguishing an n-node cycle  from two disjoint copies of the (n/2)-
node cycle .

Cn
Cn/2

Cannot be sure which one a trace came from unless n/2 adjacent nodes are preserved, 
which happens in  traces.2Ω(n)

Can show the distribution of subgraphs to be virtually identical, to bound error.

C8

C4

C4
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ARBITRARY GRAPHS: POSITIVE RESULTS
➤ Graphs with Maximum Degree 1

Theorem. We can recover graphs with maximum degree 1 in  traces whp.O(n)

➤ Degree Distribution

Theorem. For any graph, we can recover the degree distribution in  
traces whp.

exp(O(n1/3))

(3,3,3,2,2,1)
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Theorem (Main). Almost all graphs can be reconstructed whp with  traces.O(log n)

Optimality. This is the best we could hope for, since we require  traces just 
to ensure every node appears in at least one trace.

Ω(log n)

Main Idea. Reconstruction would be easy if the nodes came with labels, so we try to 
identify common substructures to determine a consistent labeling of vertices 
across traces.

Intermediate Question. How large a common substructure do we need to be sure 
that they correspond to the same nodes of the original graph?
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A graph G is symmetric if it has a nontrivial automorphism.
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Observation. If every time the same node in  shows up in two different traces, we 
can label it consistently, this means we can “identify” every node we see.

G

So, if every vertex shows up in some trace, we will have consistently labeled all 
vertices, and if every pair of vertices shows up, we will have identified all the edges.

Theorem (Main). For random graphs,  traces suffice for reconstruction.O(log n)

Extension. We can extend the result up to   as well, using an 
extension to Müller, an extra subsampling step, and a modification to the proof.

q ≈ 1 − poly(1/n)
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Definition. The adjacency matrix of a graph  on nodes  is 
an  binary matrix  with  if and only if .

G = (V, E) V = {1,…, n}
n × n A Aij = 1 (i, j) ∈ E

Question. How many random symmetric submatrices do we need to reconstruct 
the original graph?

0 1 0 0 0 0
1 0 1 0 1 0
0 1 0 1 1 0
0 0 1 0 0 1
0 1 1 0 0 1
0 0 0 1 1 0

0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0

v1

v2 v5

v3 v4
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Theorem (Main).  traces suffice for arbitrary graphs, and  
for sparse graphs.

exp(O(n2/3)) exp(O(n1/3))

Main Idea. Reduce the problem to a (modified) string reconstruction problem by 
finding a suitable encoding method.

Can use complex analysis and moment estimation as in trace reconstruction, albeit 
with modifications.

0 1 0 0 0 0
1 0 1 0 1 0
0 1 0 1 1 0
0 0 1 0 0 1
0 1 1 0 0 1
0 0 0 1 1 0

0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0
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OPEN PROBLEMS AND FUTURE DIRECTIONS

Conjecture. We can extend the results for random graphs to even higher values of 
 as well, e.g., .q q = 1 − o(1)

Question. What is a lower bound for the sample complexity of graph 
reconstruction? Can we beat the lower bound for string reconstruction?

Question. What are other structures that can have natural analogues for these 
questions, and what techniques can we inherit from these results?
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