
Randomized Numerical Linear Algebra
for Interior Point Methods

Gregory Dexter

Department of Computer Science
Purdue University

Overview

■ Interior Point Methods (IPMs)
■ A class of algorithms to solve linear programs (LPs)

■ Randomized Numerical Linear Algebra (RandNLA)
■ Studies randomized algorithms for linear algebra

We focus on using RandNLA to create practical fast
IPMs to solve large-scale LPs

2

Applications of Linear Programming

■ Machine learning
■ Non-negative matrix factorization
■ ℓ1-regularized SVMs
■ Robust linear regression

■ Theoretical Computer Science
■ Network flow
■ Multicommodity flow

■ Operations Research
■ Logistic routing
■ Balancing electrical grids

3

Standard Form Linear Programs

4

Interior Point Methods

■ Path-following IPMs can broadly be categorized as:
■ Long step methods (worse theoretically, fast in practice)
■ Short step methods (better theoretically, slow in practice)
■ Predictor-corrector methods (good theoretically and in

practice)

■ We focus on the long step and predictor-corrector
methods
■ Note: Other IPMs (e.g. potential reduction methods) and

non-IPMs (e.g simplex method) exist to solve LPs as well
■ Path-following IPMs are typically best for large LPs

5

Interior Point Methods cont.

■ IPMs work by traversing the interior of the feasible
polytope while staying near the “central path”
■ Staying away from the edge of polytope improves

convergence theoretically and in practice
■ Runtime cost dominated by solving a linear system at

each iteration
■ Steps are computed by solving “normal equations”
■ In large scale IPMs, only iterative linear solvers are efficient

enough
■ More efficient solvers greatly improve overall runtime

6

Visualization of Path-Following IPMs

7

Figure from Lesaja, G. (2009). Introducing interior-point methods for introductory operations research
 courses and/or linear programming courses. Open Operational Research Journal, 3, 1.

Overview of RandNLA

■ Randomized algorithms for linear algebra/matrices
■ Combination of 1) Random matrix theory, 2) Matrix

perturbation theory, 3) Numerical linear algebra (NLA)
■ Provides many effective improvements to fundamental

NLA algorithms
■ Subsampled least-squares regression
■ Approximate matrix multiplication
■ Online/Streaming norm approximation

■ Provides theoretical tools to efficiently solve the
normal equations with theoretical guarantees

8

RandNLA for Solving Linear Systems
 [slide from H. Avron]

9

Details: the approximate solution violates critical equalities:

• The vector is the primal residual; for feasible long-step IPMs, it is the all-zero vector.

• Standard analyses of long-step (infeasible/feasible) IPMs critically need the second inequality to be
an equality.

• Without the above equalities, in the case of feasible IPMs, we can not terminate with a feasible
solution; we will end up with an approximately feasible solution.

𝑟𝑝

Challenges to Using Iterative Solvers

Immediate problem: even assuming a feasible starting point, approximate solutions do
not lead to feasible updates.

• As a result, standard analyses of the convergence of IPMs are not applicable.

• We use RandNLA approaches to efficiently and provably accurately correct the error induced by
the approximate solution and guarantee convergence.

and 𝟎𝒎

 RandNLA & IPMs for LPs

Research Agenda: Explore how approximate, iterative solvers for the normal equations
affect the convergence of

 (1) long-step (feasible and infeasible) IPMs,

 (2) feasible predictor-corrector IPMs.

➢ We seek to investigate standard, practical solvers, such as Preconditioned Conjugate
Gradients, Preconditioned Steepest Descent, Preconditioned Richardson’s iteration, etc.

➢ The preconditioner is constructed using RandNLA sketching-based approaches.

➢ Remark: For feasible path-following IPMs, an additional design choice is whether we
want the final solution to be feasible or approximately feasible.

Standard Form Linear Programs

12

Interior Point Methods (IPMs)
 (long-step)

 IPM Normal Equations

 Path-following IPMs, at every iteration, solve a system of linear equations :

normal
equations

15

Standard form of primal LP:

Path-following, long-step IPMs: compute the Newton search direction; update the
current iterate by following a (long) step towards the search direction.

A standard approach involves solving the normal equations:

Vector of m unknowns

where

Use a preconditioned method to solve the above system: we analyzed
preconditioned Conjugate Gradient solvers; preconditioned Richardson’s; and
preconditioned Steepest Descent, all with randomized preconditioners.

Preconditioning in Interior Point Methods
 (H. Avron, A. Chowdhuri, P. Drineas, and P. London, NeurIPS 2020)

We construct a “correction” vector s.t.:

The vector is the primal residual; the vector is the dual residual. For
feasible long-step IPMs, they are both all-zero vectors.

𝑣 ∈ 𝑅𝑛

𝑟𝑝 𝑟𝑑

 Results
 (correction vector idea also in O’Neal and Monteiro 2003)

Then

Results

• Our (sketching-based) “correction” vector works with probability
and can be constructed in time

• If sketching-based, randomized preconditioned solvers are used, then we
only need mat-vecs to construct .

• Using this “correction” vector , analyses of long-step (infeasible/
feasible) IPMs work!

𝑣 ∈ 𝑅𝑛 1 − 𝛿

𝒗

𝑣 ∈ 𝑅𝑛

Results: feasible, long-step IPMs

If the constraint matrix is short-and-fat , then

➢ Run outer iterations of the IPM solver.

➢ In each outer iteration, the normal equations are solved by inner iterations of
the PCG solver.

➢ Then, the feasible, long-step IPM converges.

➢ Can be generalized to (exact) low-rank matrices A with rank .

Thus, approximate solutions suffice; ignoring failure probabilities, each inner iteration
needs time

𝑨 ∈ 𝑹𝒎×𝒏 (𝒎 ≪ 𝒏)

 𝑂(𝑛 ⋅ 𝑙𝑜𝑔(1
𝜖))

𝑂(log𝑛)

𝑘 ≪ min{𝑚, 𝑛}

Results: infeasible, long-step IPMs

If the constraint matrix is short-and-fat , then

➢ Run outer iterations of the IPM solver.

➢ In each outer iteration, the normal equations are solved by inner iterations of
the PCG solver.

➢ Then, the infeasible, long-step IPM converges.

➢ Can be generalized to (exact) low-rank matrices A with rank .

Thus, approximate solutions suffice; ignoring failure probabilities, each inner iteration
needs time

𝑨 ∈ 𝑹𝒎×𝒏 (𝒎 ≪ 𝒏)

 𝑂(𝑛2 ⋅ 𝑙𝑜𝑔(1
𝜖))

𝑂(log𝑛)

𝑘 ≪ min{𝑚, 𝑛}

➢ By oscillating between the following two types of steps at each iteration, Predictor-
Corrector (PC) IPMs achieve twofold objective of (i) reducing duality measure µ
and (ii) improving centrality :

• Predictor step (σ = 0) to reduce the duality measure µ.

• Corrector steps (σ = 1) to improve centrality.

➢ PC obtains the best of both worlds: (i) the practical flexibility of long-step IPMs
and (ii) the convergence rate of short-step IPMs.

Feasible Predictor-Corrector IPMs
(joint with H. Avron, A. Chowdhuri, P. Drineas ICML 2022; long paper)

➢ By oscillating between the following two types of steps at each iteration, Predictor-
Corrector (PC) IPMs achieve twofold objective of (i) reducing duality measure µ
and (ii) improving centrality :

• Predictor step (σ = 0) to reduce the duality measure µ.

• Corrector steps (σ = 1) to improve centrality.

➢ PC obtains the best of both worlds: (i) the practical flexibility of long-step IPMs
and (ii) the convergence rate of short-step IPMs.

➢Our work combines the prototypical PC algorithm (e.g., see Wright (1997)) with
(preconditioned) inexact solvers.

Feasible Predictor-Corrector IPMs
 (joint with H. Avron, A. Chowdhuri, P. Drineas ICML 2022; long paper)

Predictor-corrector Algorithm Overview

Alternates between predictor and corrector
steps

■ Predictor step greatly decreases duality
measure, while deviating from the central
path (centering parameter).

■ Corrector step keeps duality measure
constant but returns iterate to near
central path (centering parameter).

■ Alternates between two neighborhoods
of the central path and .

𝜎 = 1

𝜎 = 0

𝑁2(0.25) 𝑁2(0.5)

Predictor-Corrector Challenges

Major challenge:
■ (Standard analysis breaks; the (feasible) long-step proof was easier; we

had to come up with new inequalities for an approximate version of the
duality measure.)

■ Using a correction vector by itself is insufficient
■ Better convergence comes from a more restrictive neighborhood:

■ Needed sharper inequalities for the inexact steps

23

Instead of…

Solving the linear system

Again, at each iteration of the Predictor-Corrector IPM, we need to solve
the following linear system:

Note that the last two equations only involve matrix-vector products.
Therefore, we only focus on solving the first equation efficiently.
In the predictor step: (σ = 0); In the corrector step: (σ = 1)

Structural Conditions for Inexact PC

➢ Let be an approximate solution to the normal equations .

➢ If satisfies (sufficient conditions):

➢ Then, we prove that the Inexact PC method converges in

iterations, as expected.

➢ The final solution (and all intermediate iterates) are only approximately
feasible.

Δ~𝑦 (𝐴𝐷2𝐴𝑇) ⋅ Δ𝑦 = 𝑝

Δ~𝑦

𝑂(𝑛 ⋅ log(1
𝜖))

➢ We modified the PC method using a correction vector to make iterates exactly feasible.

➢ Let be an approximate solution to the normal equations .

➢ If and satisfy (sufficient conditions):

➢ Then, we prove that this modified Inexact PC method converges in

iterations, as expected.

➢ The final solution (and all intermediate iterates) are exactly feasible.

𝒗

Δ~𝑦 (𝐴𝐷2𝐴𝑇) ⋅ Δ𝑦 = 𝑝

Δ~𝑦 𝑣

𝑂(𝑛 ⋅ log(1
𝜖))

Structural Conditions for Inexact PC
using a correction vector 𝑣

➢ We analyzed Preconditioned Conjugate Gradients (PCG) solvers with randomized
preconditioners for constraint matrices that are: short-and-fat , tall-and-thin

 or have exact low-rank

➢ Satisfying the structural conditions for “standard” Inexact PC: the PCG solver needs

 iterations (inner iterations).

➢ Satisfying the structural conditions for the “modified” Inexact PC: the PCG solver

needs iterations (inner iterations).

➢ Notice that using the error-adjustment vector in the modified Inexact PC eliminates the
dependency on the largest singular value of the matrix

𝐴 ∈ 𝑅𝑛×𝑛 (𝑚 ≪ 𝑛)
(𝑚 ≫ 𝑛) k ≪ min{𝑚, 𝑛} .

𝑂(log(𝑛 ⋅ 𝜎1(𝐴𝐷)
𝜖))

𝑂(log(𝑛
𝜖))

𝑣
𝐴𝐷 .

Satisfying the structural conditions

Details: the preconditioned equation

Corresponding preconditioned equation is given by

Here is the preconditioner.

Clearly, we need a matrix which is “easily” invertible.

(Will come back to this later.)

𝑄 ∈ 𝑅𝑚×𝑚

𝑄

Satisfying the sufficient conditions for Inexact
Predictor-Corrector IPMs (no correction vector)

For an accuracy parameter , it can be shown that the following two
conditions on the preconditioner of the iterative solver can be used to derive
the sufficient conditions:

(C1) All singular values of the preconditioned matrix
satisfy:

(C2) As the number of iterations t of the iterative solver increase, the residual norm
w.r.t the preconditioned system decreases monotonically:

𝜁 ∈ (0,1)
𝑄−1/2

𝜎𝑖, 𝑖 = 1…𝑚 𝑄−1/2 𝐴𝐷

Constructing our preconditioner

■ For a suitable sketching matrix with let .
■ To invert , it is sufficient to compute the SVD of , which takes

time.
■ Choice of the sketching matrix :

■ could be the CountSketch matrix with and non-zero

entries per row.
■ Many, many other choices exist (random Gaussians, fast randomized transforms,

etc.)
■ can be computed in time.

■ We can compute in time:

𝑊 ∈ 𝑅𝑛×𝑤 𝑤 ≪ 𝑛 𝑄 = 𝐴𝐷𝑊 𝑊 𝑇 𝐷𝐴𝑇

𝑄 𝐴𝐷𝑊 𝑂(𝑚2𝑤)

𝑾
𝑾 𝑤 = 𝑂(𝑚log𝑚) log𝑚

𝐴𝐷𝑊 𝑂(log 𝑚 ⋅ 𝑛𝑛𝑧(𝐴))

𝑄−1/2

Iterative solver: summary

■ Approximate solution can be
found by pre-multiplying the
solution by the preconditioner.

■ Instead of Conjugate Gradients
(CG), one can use other
iterative solvers, namely,
Chebyshev iteration, Steepest
descent etc.

Δ~y

Satisfying condition C1: Bounding the condition
number of the preconditioned matrix

■ Here is the matrix of the right singular vectors of (thin SVD, containing only the
singular vectors corresponding to non-zero singular values.

■ This is the so-called -subspace embedding condition and implies that the condition
number of remains small.

■ Our satisfies the -subspace embedding condition with high probability.

𝑉 𝐴

ℓ2
𝑄−1/2𝐴𝐷

𝑊 ℓ2

Satisfying condition C2: the residual norm w.r.t the
preconditioned system decreases monotonically

■ Residual drops exponentially fast as the number of iterations
increases.

■ The above guarantee holds for various iterative solvers including CG,
Chebyshev iteration, Steepest descent etc.

𝑡

Satisfying condition C2 using conjugate gradient

■ Note that, in general, an energy norm error on the approximate solution derived
via CG does not ensure that the residual norms decrease monotonically (even if
the energy norm error decreases monotonically).

■ From (C1), we already have a bound on the condition number of .
■ If we combine the above inequality with the recursion, we get (C2).
■ Therefore, our preconditioner ensures the CG residual decreases monotonically.

𝑄−1/2𝐴𝐷

Result (Theorem 8 of Bouyouli et al. (2009)):

Satisfying condition C2 using Chebyshev
iteration

■ Chebyshev iteration avoids the computation of the communication intensive
inner products which is typically needed for CG or other non-stationary methods.

■ Therefore, this solver is convenient in parallel or distributed settings.
■ Due to (C1), we already have a bound for Using this, we establish (C2).𝑈 .

Result (Theorem 1.6.2 of Gutknecht (2008)):

Other solvers

■ Similarly, our preconditioner also satisfies (C2) with
respect to other two popular iterative solvers, namely
Steepest descent and Richardson iteration.

■ The proofs for both the solvers rely on the fact that
due to the efficient preconditioning the residuals of
the preconditioned system decrease monotonically.

Constructing the vector 𝑣

■ Any iterative solver solves the system approximately. Therefore, due to the
approximation error caused by the solver, the iterates of our predictor-
corrector IPM lose feasibility right after the first iteration.

■ As already discussed, for our inexact corrected predictor-corrector, we
introduce a correction vector in order to maintain feasibility at each
iteration of the IPM.

■ must satisfy the following invariant at each iteration:

Recall that is the solution returned by the iterative solver.

(A solution originally proposed by Monteiro & O'Neal (2003) is
expensive)

𝑣

𝑣

Δ~y

Constructing the vector 𝑣

■ Our solution:

● Inspired by work on sketching for under-constrained regularized
regression problems.

● We use the same sketching matrix W that we used for constructing our
preconditioner.

● Due to the “good” preconditioner we used, we can show that the norm of is
nicely bounded and thus the sufficient conditions are satisfied.

● Other constructions might be possible and perhaps better in theory and/or
practice.

𝑣

Time to compute the correction vector

■ Recall our solution:

■ We have already computed the pseudoinverse of
 when constructing our preconditioner.

■ Pre-multiplying by takes time,
assuming .

■ are diagonal matrices.
■ Therefore, computing takes time.

𝐴𝐷𝑊
𝑊 𝑂(𝑛𝑛𝑧(𝐴) ⋅ log𝑚)

𝑛𝑛𝑧(𝐴) ≥ 𝑛
𝑿, 𝑺

𝑣 𝑂(𝑛𝑛𝑧(𝐴) ⋅ log𝑚)

Overall running time (per iteration)

Accounting for the number of iterations of the solver, as well as the
failure probability , the per-iteration cost of our approaches
is given by:

■ Without a correction vector:

■ With a correction vector:

𝜂 ∈ (0,1)

Recap

■ Infeasible/Feasible inexact long step method using a correction
vector maintains prior outer iteration complexity

■ Structural conditions for inexact feasible predictor-corrector
methods to maintain prior outer iteration complexity
■ Approximately feasible solution using standard predictor-correct

method with inexact solver
■ Exactly feasible solution when using a correction vector

■ Fast iterative linear solver for matrices with low exact rank by
using RandNLA
■ Fulfills necessary conditions for above IPM convergence analysis
■ Takes advantage of sparsity in constrain matrix
■ Efficient and practical large-scale linear programming

Open problems

➢ Can we prove similar results for infeasible predictor-corrector IPMs? Recall that such
methods need outer iterations (Yang & Namashita 2018).

➢ Are our structural conditions necessary? Can we derive simpler conditions? Is a lower
precision solver sufficient?

➢ Could our structural conditions change from one iteration to the next? Could we use
dynamic preconditioning or reuse preconditioners from one iteration to the next (e.g.,
low-rank updates of the preconditioners)?

➢ Will a similar approach work for more general optimization problems e.g., Quadratic
Programming (QP) or Semidefinite Programming (SDP)

𝑂(𝑛)

Relevant literature

G. Dexter, A. Chowdhuri, H. Avron, and P. Drineas, On the convergence of Inexact Predictor-Corrector
Methods for Linear Programming, ICML 2022.
A. Chowdhuri, G. Dexter, P. London, H. Avron, and P. Drineas, Faster Randomized Interior Point
Methods for Tall/Wide Linear Programs, Under Review by JMLR, 2022.
A. Chowdhuri, P. London, H. Avron, and P. Drineas, Speeding up Linear Programming using
Randomized Linear Algebra, NeurIPS 2020.
R. Monteiro and J. O’Neal, Convergence analysis of a long-step primaldual infeasible interior-point LP
algorithm based on iterative linear solvers, 2003.
D. Woodruff, Sketching as a Tool for Numerical Linear Algebra, FTTCS 2014.
M. W. Mahoney and P. Drineas, RandNLA: Randomized Numerical Linear Algebra, CACM 2016.
P. Drineas and M. W. Mahoney, Lectures on Randomized Numerical Linear Algebra, Amer. Math. Soc.,
2018.

43

