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Representing a Social Network as a Graph
• We have some undirected graph .


• In the synthetic setting (i.e., not a real social network), we use 
generative graph models:


•  random graph model   [Erdős and Rényi ’59] 

• “Preferential attachment” model   [Barabási and Albert ’99]


• “Small world” model   [Newman, Watts, and Strogatz ’99]


• In the theoretical setting we often focus on standard E-R 
graphs, but others are useful to verify our model.

G = (V, E)

G(n, p)



Opinions in the Graph
• Each node has an opinion, which is assigned using the F-J 

opinion dynamics model    [Friedkin-Johnsen ’91]


• Each node has an innate opinion (fixed), and an expressed 
opinion (updated over time).   

• We set innate opinions to be either discrete or continuous: 

• This graph evolves over time.  At each time step, we manipulate 
roughly 10% of the edges in the graph using our edge dynamics 
model.

discrete ∈ {−1,1} , continuous ∈ [−1,1]



• We approximate confirmation bias by stochastically removing 
disagreeable edges in the graph.


• i.e. — if edge is more disagreeable, it is more likely to be removed


• For each removed edge, we add a friend-of-friend edge — 
approximates the design of some recommender systems.


• Intuition: from a sociological perspective, despite differences in 
opinion, many connections in the real-world remain strong.  We set 
some percentage of fixed edges, which cannot be deleted.

Graph Evolution Over Time (Edge Dynamics)



Notation / Definitions
• Let  denote the innate opinion vector, with length  (num. of nodes)


•  is the  identity matrix


•  is the graph Laplacian, defined as 


• F-J opinion update, where  denotes expressed opinion vector:

⃗s n

I n × n

L D − A

⃗z

⃗z(i) =
⃗s(i) + ∑j wij ⃗z( j)

1 + ∑j wij
⟶ ⃗z = (I + L)−1 ⃗s



Notation / Definitions (cont.)
• Polarization, where  denotes expressed opinion vector:


• Note: this works because innate opinions are mean-0 vectors


• Disagreement, where  denotes expressed opinion vector:

⃗z

⃗z

P(L, ⃗s) = ⃗zT ⃗z = ⃗sT(I + L)−2 ⃗s

D(L, ⃗s) = ∑
i,j

wi,j ⋅ ( ⃗z(i) − ⃗z( j))2 = ⃗zTL ⃗z = ⃗sT(I + L)−1 L (I + L)−1 ⃗s



“Standard” Experimental Setup
• Start by presenting the setup and results for a “benchmark” 

edge dynamics experiment: 
• Erdős–Rényi random graph with

• Fixed Edge percentage  

• 500 “time steps” (iterations) of edge dynamics 

• Connection probability

• friend-of-friend recommendations 

• “Confirmation bias” disagreeable edge deletion

• Continuous innate opinions assigned to each node on [-1,1] 

• 10% of edges removed/added each time step.

n = 1000

p = 25/n

pf ∈ [0 % ,5 % ,10 % ,15 % ,25%]



Characteristic Results

Polarization over time for standard experiment Disagreement over time for standard experiment

P(L, ⃗s) = ⃗zT ⃗z = ⃗sT(I + L)−2 ⃗s D(L, ⃗s) = ⃗zTL ⃗z



Visual / Intuitive Understanding
• We show the evolution of the standard experiment 

using NetworkX visualization tools.


• The color of each node is set according to its 
expressed opinion from the F-J equilibrium


• [-1, … , 0 , … , 1] maps to [blue … white … red]


• Edges are thin black lines that connect nodes.  
Nodes are clustered near neighboring nodes.


• Show for both 0% fixed edges and 10% fixed edges.



No Fixed Edges, E-R graph, , standard experimentn = 1000

t = 0



No Fixed Edges, E-R graph, , standard experimentn = 1000

t = 1



No Fixed Edges, E-R graph, , standard experimentn = 1000

t = 9



No Fixed Edges, E-R graph, , standard experimentn = 1000

t = 16



No Fixed Edges, E-R graph, , standard experimentn = 1000

t = 23

Peak  

disagreement!



No Fixed Edges, E-R graph, , standard experimentn = 1000

t = 25



No Fixed Edges, E-R graph, , standard experimentn = 1000

t = 100



10% Fixed Edges, E-R graph, , standard edge dynamicsn = 1000

t = 0



10% Fixed Edges, E-R graph, , standard edge dynamicsn = 1000

t = 11



10% Fixed Edges, E-R graph, , standard edge dynamicsn = 1000

t = 14



10% Fixed Edges, E-R graph, , standard edge dynamicsn = 1000

t = 19



10% Fixed Edges, E-R graph, , standard edge dynamicsn = 1000

t = 50



10% Fixed Edges, E-R graph, , standard edge dynamicsn = 1000

t = 100



10% Fixed Edges, E-R graph, , standard edge dynamicsn = 1000

t = 500



Theoretical Analysis through Stochastic Block Model
• We view the underlying network as a Stochastic 

Block Model graph with two blocks, where each 
block holds a different innate opinion.


• SBM allows us to specify two separate 
connection probabilities,  and .


• Ties in with the classic problems of community 
detection and spectral clustering.

p q

Abbe, “Community Detection and Stochastic 
Block Models”, JMLR 2018



• We analyze the Laplacian   
of an SBM graph in expectation. 

• Then  takes the following form, 
where  is the in-group connection 
probability, and  is the out-group 
connection probability.


• Next, consider the discrete innate 
opinion vector , with length n.


•  is the second eigenvector of  !

L̄G = 𝔼 [LG]

L̄G
p

q

⃗s

⃗s L̄G

SBM Laplacian in Expectation

⃗s = [1, … 1, −1, … −1]



• For uniform fixed edges, set , 
which is some small connection 
probability independent of  and .


• We analyze the expected Laplacian 
 of an SBM graph 

with probabilities ( ) and ( ). 

• Note that if , neither of the 
above quantities can equal 0…

γ

p q

L̂G = 𝔼 [LG + LF]
p + γ q + γ

γ > 0

Expected SBM Laplacian w/ Fixed Edges

⃗s = [1, … 1, −1, … −1]



Deriving P(L) and D(L) using  L̄G

P(L, ⃗s) = | | ⃗z | |2
2 = ⃗sT(I + L)−2 ⃗s

λn−1(L̄G) =
n(p + q)

2
−

n(p − q)
2

= qn λ2((L̄G + I)−1) =
1

qn + 1
↔ ⃗v2 = ⃗s

(L̄G + I)−1 ⃗s =
1

qn + 1
⋅ ⃗s

P(L̄G, s) =
1

(qn + 1)2
⋅ ⃗sT ⃗s =

n
(qn + 1)2

D(L, s) = ⃗sT(I + L)−1L(I + L)−1 ⃗s

D(L̄G, s) =
qn

(qn + 1)2
⋅ ⃗sT ⃗s =

qn2

(qn + 1)2

L̄G(L̄G + I)−1 ⃗s =
qn

qn + 1
⋅ ⃗s



Checking these Derivations

P(LG, s) = ⃗sT(I + L)−2 ⃗s

• We generate SBM graphs with two blocks — discrete innate opinions .


• We change  and  over time, and show that reducing  appears similar to the behavior of our model.
∈ {−1,1}

p q q

As q gets smaller, polarization increases, peaking when the 
two groups are fully disconnected without fixed edges.

D(LG, s) = ⃗sT(I + L)−1L(I + L)−1 ⃗s

As q gets smaller, disagreement spikes initially and then 
falls when the blocks fully disconnect without fixed edges.



Checking these Derivations
• We generate SBM graphs with two blocks — discrete innate opinions .


• We change  and  over time, and show that reducing  appears similar to the behavior of our model.
∈ {−1,1}

p q q
P(L̂G, s̄) =

n
((q + γ)n + 1)2 D(L̂G, s̄) =

(q + γ)n2

((q + γ)n + 1)2

Polarization approximation — Tracks closely with the actual 
value for polarization.

Disagreement approximation — Tracks closely with the 
actual value for disagreement.



Real-World Verification
• We have this model and understand it theoretically; we want to 

get some idea of how realistic it is — verify our model against 
real world data.


• Related works attempt to do this by quantifying graph 
structure, through measures such as the global clustering 
coefficient, degree distribution, and small world quotient.


• We explore two methods:


• The first method leverages graph measures to show that our 
model creates realistic structures.


• The second constructs a real-world graph based on 
temporal data, so we can analyze how it changes over time.

Twitter (Delhi 2013) Dataset

De et al., Learning Linear Influence Models in 
Social Networks from Transient Opinion 
Dynamics. 2019.



Twitter (Delhi 2013) Dataset

[De et al. ’19]

Verification through Graph Measures
• In this section, we study a real-world snapshot from 

Twitter, which captured interactions surrounding a 2013 
Delhi election   [De et al. ’19]


• 

• We generate a graph, which has 531 nodes, ~3600 edges, 

and fixed edges in 


• Both Erdős–Rényi and Barabási–Albert graphs

• On these generated graphs, we simulate edge dynamics 

with both friend-of-friend recommendations and 
confirmation bias edge deletion

n = 531 nodes |E | = 3621 edges

pf = {15 % ,25 % ,35%}



Verification through Graph 
Measures — Clustering

• Different fixed edges yield different values for 
the global clustering coefficient — use this 
value to tune against real data. 

• 25% fixed edges is closest 

• Next we’ll compare other measures between 
the steady-state snapshots and Twitter graph.


• Twitter global clustering coefficient ~ 0.227
Global clustering coefficient over time for Barabási–Albert graphs

Global clustering coefficient over time for Erdős–Rényi graphs

CCGlo =
3 ⋅ # of triangles ∈ G

# of open & closed triads ∈ G



Twitter (Delhi 2013) snapshot visualized

Verification through Graph Measures — Visually
• Taking a look at the initial generated graphs, 

compared against the Twitter graph.

Erdős–Rényi graph with 25% fixed edges, before edge 
dynamics

Barabási–Albert graph with 25% fixed edges, before edge 
dynamics



Twitter (Delhi 2013) snapshot visualized

Verification through Graph Measures — Visually
• Looking at the simulated steady-state graphs, 

compared against the Twitter graph.

Erdős–Rényi graph w/ 25% fixed edges, AFTER edge 
dynamics

Barabási–Albert graph w/ 25% fixed edges, AFTER edge 
dynamics



Verification through Graph 
Measures — Degree Distribution
• Degree distribution of the initial generated 

graphs, compared against the Twitter graph.

• Known that real-world networks exhibit this type 

of power law degree dist.   [Muchnik et al. ’13] Erdős–Rényi graph with 25% fixed edges, degree distribution 
before edge dynamics

Barabási–Albert graph with 25% fixed edges, degree 
distribution before edge dynamics

Twitter (Delhi 2013) degree distribution



Verification through Graph 
Measures — Degree Distribution
• Degree distribution of the simulated steady-state 

graphs, compared against the Twitter graph.

• Interesting result — prior work   [Sasahara et al. ’20] 

has not been able to alter the degree distribution of a 
network through a synthetic model. Erdős–Rényi graph with 25% fixed edges, degree distribution 

AFTER edge dynamics

Barabási–Albert graph with 25% fixed edges, degree 
distribution AFTER edge dynamics

Twitter (Delhi 2013) degree distribution



Real-World Verification through Temporal Data
• In this section, we study a data set containing U.S. Congress co-sponsorship 

records over time.   [Benson et al. ’18, Fowler ‘06] 


•  temporal co-sponsorship records 

• Each record represents a bill and a list of people (nodes) who co-sponsored it.

• We also recovered partisan IDs for each node, so we have “innate opinions”.

• High-Level Intuition: We iterate through the records, sampling from each 

record to add timestamped edges. 

• With each added edge, we delete the oldest edge in the graph to remove 

the influence of connections that have no recent activity.

• Initially, edge deletion is disabled, so we can build up density in the graph.

n = 1,718 nodes, 260,851



Temporal Verification — Clustering & Triangles
• Both the global clustering coefficient and number of triangles rising over time.

• Vertical lines indicate the time step when edge deletion is turned on and 

experiment starts.

Triangles over time for temporal data set.  Vertical line indicates 
timestep where density threshold was met

Global clustering coefficient over time for temporal data set.  
Vertical line indicates timestep where density threshold was met.



Temporal graph at t = 3500Temporal graph at t = 2200Temporal graph at t = 0

Visualizing the temporal graph evolving over time

Temporal graph at t = 2800



Temporal Verification — Polarization & Disagreement

Disagreement for temporal data set.  Vertical line indicates 
timestep where density threshold was met

Polarization over time for temporal data set.  Vertical line 
indicates timestep where density threshold was met.

• Using the party IDs as innate opinions, we see polarization rising over time, and 
disagreement rises before falling — does looks similar to our model at surface level 


• Vertical line indicates the time step when edge deletion is turned on.



Temporal Verification — Polarization & Disagreement
• Using the party IDs as innate opinions, we see polarization rising over time, and 

disagreement rises before falling — does looks similar to our model at surface level 

• Vertical line indicates the time step when edge deletion is turned on.

Size of largest connected component for temporal data set.  
Vertical line indicates timestep where density threshold was met

• Quantities of polarization and 
disagreement mirror the size of the 
largest connected component.  

• After edge deletion is turned on, 
the graph starts disconnecting 
around t = 3000


• Inconclusive result, but there is 
evidence that nodes are being 
sorted into clusters



• We introduce a model of social networks that combines F-J opinion 
dynamics with edge dynamics; friend-of-friend recommendations and 
confirmation bias edge deletion.


• We think we have a fairly strong theoretical understanding of our model.


• The techniques used in the theoretical study of our model could be 
extended further — leverage relationships to approximate different 
quantities, generalize to more diverse opinion settings, etc.


• Potential to extend past the simple F-J model shown here for more 
realistic opinion dynamics.

Conclusions / Future Steps



• Interesting preliminary results for real-world verification.


• For the snapshot method, generalization to other measures such as 
small world quotient, closeness centrality is something to explore further 
— also, fixed edges aren’t the only way that we could constrain edge 
dynamics.


• Initial temporal results are inconclusive, but worth further inquiry — 
having access to an evolving real-world network opens up a number of 
possibilities for further comparison

Conclusions / Future Steps



Q & A / Discussion


