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What are expanders?

Loosely, expanders are a family of graphs that are:

1 Sparse
2 Highly connected
3 Explicitly constructable

3 will be important later...
But for now, we will focus on the
expansion properties.

We will consider undirected graphs G = (V ,E ).

We think of |V | = n, where n → ∞ (i.e., graph has many vertices),

and G is d-regular, (i.e., deg(u) = d for all u), where d is a constant.

Note that n grows large, but d remains constant, so G must be sparse.

Something to keep in mind
A random graph is likely to have properties 1 and 2.
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What are expanders? “highly connected”

We can define edge expansion using conductance. For some subset of

vertices S ⊆ V , the conductance Φ(S) is defined:

Φ(S) =
fraction of edges (u, v) : u ∈ S , v ̸∈ S

fraction of vertices ∈ S

The conductance of the whole graph G is similarly defined as:

ΦG = min
0≤|S|≤n/2

Φ(S) i.e., min Φ over non-empty subsets : |S | ≤ n/2

G has good expansion if ΦG is big, e.g. ΦG ≥ 0.01.

Note that n/2 is somewhat arbitrary in this example – in some sense harder
to have good expansion as |S | gets larger.

So, we may consider expansion up to a fixed constant, i.e. |S | ≤ .01n.
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What are expanders? “highly connected”

There also exists a notion of vertex expansion...

High-level idea is that every “not-too-large” set of vertices has “many”
neighbors.

Formally, G is a (K ,A)-vertex expander if for all sets S of at most K
vertices, the neighborhood N(S) is of size at least A · |S |, where

N(S) := {u | ∃v ∈ S s.t.(u, v) ∈ E}

Ideally, A should be large; want to get it close to d .

Expanders 5 / 21



Random constructions

We consider expanders in the context of left d-regular bipartite graphs.

V is partitioned into two sets L and R , d-regularity is maintained on
vertices in L, and expansion is chosen from sets S ⊂ L.

[Pinsker ’73], by the probabilistic method:

Consider d ≥ 3, and n ≥ n0, where n0 is
some constant. A random left d-regular
bipartite graph has, with high probability:

|N(S)| ≥ (d − 2)|S |

for all |S | ≤ cd · n and S ⊂ L ( cd is a
constant dependent on d , ∼ 1

20d4 ) Example of a left d-regular
bipartite graph
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Random constructions cont.

[Bassalygo ’81] showed, for a random left
d-regular bipartite graph, where d ≥ 64,
|L| = n and |R| = 3

4n:

|N(S)| ≥ 0.8 · d · |S |

for all S ⊂ L such that |S | ≤ .02
d n.

This is again proved by the probabilistic
method. The constants 0.8 and 0.02 may
vary by proof and application.

Example of a left d-regular
bipartite graph
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Goal: explicit and strongly explicit constructions

Before we look at one application of expanders, we’ll provide definitions
and motivation for explicit and strongly explicit constructions.

An explicit construction of an expander provides, in deterministic poly(n)
time, the entire adjacency matrix.

A strongly explicit construction of an expander provides the following in
deterministic poly(log n) time:

For any u ∈ V = [n] and i ∈ d , the vertex v which is ith neighbor of u.

Note that a strongly explicit construction does not give the full graph, but
rather the specified neighbor of a given vertex in the graph.
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Application: deterministic error reduction

Let A be a randomized algorithm with 1-sided error for a decision problem
P, which takes random n-bit string r and x as inputs.
Let’s say A runs in time T .

For instance, if the input x is a number, P could be “is x prime?”, and A
could be the Miller-Rabin primality test.

If x ∈ P, Pr(A says YES) = 1.

If x ̸∈ P, A is still correct with high prob, i.e. Pr(A says YES) ≤ .01.

Idea for reducing error: Repeat the algorithm d times, with independent
random n-bit strings r1, . . . , rd .

Runs in dT + O(n) time, Uses dn random bits, Error prob. ≤ .01d
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Deterministic error reduction cont.

Imagine we want to decrease the error of A, but random bits are expensive.

Use a strongly explicit bipartite expander. Say we have an expander
according to [Bas81], where |L| = |R| = 2n (!)

Name vertices in L and R by n-bit strings, rely on strongly explicit property.

|N(S)| ≥ 0.8 · d · |S |

Reducing error: Pick ℓ ∈ L uniformly at random using n random bits. Let
r1, . . . , rd be neighbors of ℓ in R , accessible in poly(n) time.

Runs in poly(n) + dT time
Uses n random bits
Error probability ≤ .02

d (proof coming up!)
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Deterministic error reduction conclusion

Claim: Using a bipartite expander, the error probability for A is ≤ .02
d .

For any input x , A is wrong on at most 1% of random seeds. Let Bx ⊂ R
be these “bad strings” in R causing A to be incorrect.

Let S ⊂ L be the “bad” choices for ℓ ∈ L – those for which N(ℓ) ⊆ Bx .

Claim 2: |S | ≤ .02
d 2n.

For the sake of contradiction, assume |S | ≥ .02
d 2n. Let S ′ ⊆ S such that

|S ′| = .02
d 2n. By the expander properties:

|N(S ′)| ≥ 0.8d |S ′| = .8 · .02 · 2n = 0.016 · 2n > 0.01 · 2n = |Bx |

This is a contradiction, because there exists v ∈ N(S ′) s.t. v ̸∈ Bx , for
which A will answer NO.

Thus, the error probability of A ≤ .02
d .
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Laplacian of a Graph

Laplacian: L = D − A

Normalized Laplacian (of a d-regular graph):
LG = D−1/2LD−1/2 = I − 1

dA = I − K

λi (LG ) = 1 − λi (G ) (λ1(G ) : largest eigenvalue of G )
LG is PSD. (diagonally dominant and symmetric)
Smallest Eigenvalue λ1(LG ) = 0. Alternatively λ1(G ) = 1.
Number of connected components in the graph = dimension of the
nullspace of LG
λ2(LG ) > 0/λ2(G ) < 1 iff graph is connected.
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Cheeger’s inequality and Spectral Expansion

Cheeger’s inequality: λ2(LG )/2 ≤ ΦG ≤
√

2λ2(LG )

Can define spectral expansion in terms of λ2(LG ) or λ2(G )

Similar relationship of λ2(G ) to vertex expansion exists.

Recall
Edge Expansion: ∀|S | ≤ n

2 , Pru∼v [u ∈ S , v /∈ S ] ≥ ϵ

Conductance: ΦG = min0≤|S|≤n/2 Φ(S)

Vertex Expansion: ∀|S | ≤ n
2 , |N(S)| ≥ ϵ · d |S |
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Spectral Expanders

Definition: An (n, d , ϵ) spectral expander is an n-vertex, d-regular
graph with λ1(LG ) ≥ ϵ.

Strongly explicit construction
(Gabber and Galil[1981]): Let G be a graph with vertex set V = Z2

m and
edge set E in which we connect (x , y) to:

(x ± y , y),
(x ± (y + 1), y),
(x , x ± y),
(x , y ± (x + 1))

Eight neighbors for each vertex, can compute in O(log n) time.
(m2, 8, ϵ) expander with: ϵ ≈ .1
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Random d-regular graphs

In a random n − vertex , d − regular graph G , with probability
≥ 1 − on(1), for all i ≥ 2, we have

λi (G ) ≤ 2
√
d − 1
d

+ on(1)

Would like to get graphs with second eigenvalue close to this
Certain expander graphs achieve this bound (for certain values of d):
Ramanujan Graphs
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Ramanujan Graphs

Definition

A connected d regular graph with n vertices that satisfies λ2(G ) ≤ 2
√
d−1
d

Some interesting facts:
Explicit/strongly explicit constructions exists for certain values of d
Margulis, Lubotzky--Phillips--Sarnak’88: Infinite sequences of
Ramanujan graphs exist for d = prime+1 !

The constant 2
√
d−1
d in the definition of Ramanujan graphs is

asymptotically sharp i.e. ∀d and ϵ > 0, ∃n s.t. all d regular graphs
with at least n vertices satisfy λ2(G ) > 2

√
d−1
d − ϵ. [Alon-Bopanna

bound]
Spectral gap is almost as large as possible!
Ramanujan graphs are essentially the best possible expander graphs!
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Quasi-Random Properties of Ramanujan Graphs

Expander Mixing Lemma/ Discrepancy Property
Let G be a d-regular Ramanujan graph. For X ,Y ⊆ V , let
e(X ,Y ) = |{(x , y) ∈ X × Y : (x , y), (xy) ∈ E (G )}|. Then,∣∣∣∣e(X ,Y )− d

n
|X ||Y |

∣∣∣∣ ≤ 2
√
d |X |Y ||

(Edges of the graph are evenly distributed)

λ1 = d and λ2 < 2
√
d .

ē1 = 1√
n
[1, 1, · · · 1]

For X ⊂ V , define fX (a) =

{
1, if a ∈ X

0, otherwise
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e(X ,Y ) = ⟨fX ,GfY ⟩
Let fX =

∑
i ai ēi and fY =

∑
j bj ēj

Let a1 = ⟨fX , ē1⟩ = |X |√
n

and b1 = |Y |√
n

∣∣∣∣e(X ,Y )− d

n
|X ||Y |

∣∣∣∣ = |⟨fX ,GfY ⟩ − λ1a1b1|

≤ |λ2|
n∑

i=2

|aibi |

≤ |λ2|∥fX∥2∥fY ∥2 ≤ 2
√

d |X |Y ||
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Application: Largest Eigenvalue of {0,1}-PSD matrix

Let A be a binary (with {0, 1}) entries PSD matrix.
Need to find its largest eigenvalue λ1

Let G be the adjacency matrix of an n vertex d regular expander
graph where d = O( 1

ϵ2
)

Find R = G ∩ A.
Let c(R) be the largest connected component of R . Then,

λ1 − ϵn ≤ c(G ) ≤ λ1
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Thanks! Questions?
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