Expanders: Overview and Applications

Rajarshi Bhattacharjee and Adam Lechowicz

Overview

(1) What are expanders?
(2) Random constructions
(3) Explicit and strongly explicit constructions
(4) Application to deterministic error reduction
(5) Spectral Expansion
(6) Ramanujan Graphs
(7) Application: Largest Eigenvalue of $\{0,1\}$-PSD matrix

What are expanders?

Loosely, expanders are a family of graphs that are:
(1) Sparse
(2) Highly connected
(3) Explicitly constructable

3 will be important later...

But for now, we will focus on the expansion properties.

We will consider undirected graphs $G=(V, E)$.
We think of $|V|=n$, where $n \rightarrow \infty$ (i.e., graph has many vertices), and G is d-regular, (i.e., $\operatorname{deg}(u)=d$ for all u), where d is a constant.

Note that n grows large, but d remains constant, so G must be sparse.

Something to keep in mind

A random graph is likely to have properties 1 and 2 .

What are expanders?

We can define edge expansion using conductance. For some subset of vertices $S \subseteq V$, the conductance $\Phi(S)$ is defined:

$$
\Phi(S)=\frac{\text { fraction of edges }(u, v): u \in S, v \notin S}{\text { fraction of vertices } \in S}
$$

The conductance of the whole graph G is similarly defined as:

$$
\Phi_{G}=\min _{0 \leq|S| \leq n / 2} \Phi(S) \text { i.e., min } \Phi \text { over non-empty subsets : }|S| \leq n / 2
$$

G has good expansion if Φ_{G} is big, e.g. $\Phi_{G} \geq 0.01$.
Note that $n / 2$ is somewhat arbitrary in this example - in some sense harder to have good expansion as $|S|$ gets larger.
So, we may consider expansion up to a fixed constant, i.e. $|S| \leq .01 n$.

What are expanders?

There also exists a notion of vertex expansion...
High-level idea is that every "not-too-large" set of vertices has "many" neighbors.

Formally, G is a (K, A)-vertex expander if for all sets S of at most K vertices, the neighborhood $N(S)$ is of size at least $A \cdot|S|$, where

$$
N(S):=\{u \mid \exists v \in S \text { s.t. }(u, v) \in E\}
$$

Ideally, A should be large; want to get it close to d.

Random constructions

We consider expanders in the context of left d-regular bipartite graphs.
V is partitioned into two sets L and R, d-regularity is maintained on vertices in L, and expansion is chosen from sets $S \subset L$.
[Pinsker '73], by the probabilistic method:
Consider $d \geq 3$, and $n \geq n_{0}$, where n_{0} is some constant. A random left d-regular bipartite graph has, with high probability:

$$
|N(S)| \geq(d-2)|S|
$$

for all $|S| \leq c_{d} \cdot n$ and $S \subset L\left(c_{d}\right.$ is a constant dependent on $\left.d, \sim \frac{1}{20 d^{4}}\right)$

Example of a left d-regular bipartite graph

Random constructions cont.

[Bassalygo '81] showed, for a random left d-regular bipartite graph, where $d \geq 64$, $|L|=n$ and $|R|=\frac{3}{4} n$:

$$
|N(S)| \geq 0.8 \cdot d \cdot|S|
$$

for all $S \subset L$ such that $|S| \leq \frac{.02}{d} n$.
This is again proved by the probabilistic method. The constants 0.8 and 0.02 may vary by proof and application.

Example of a left d-regular bipartite graph

Goal: explicit and strongly explicit constructions

Before we look at one application of expanders, we'll provide definitions and motivation for explicit and strongly explicit constructions.

An explicit construction of an expander provides, in deterministic poly (n) time, the entire adjacency matrix.

A strongly explicit construction of an expander provides the following in deterministic poly $(\log n)$ time:

For any $u \in V=[n]$ and $i \in d$, the vertex v which is ith neighbor of u.
Note that a strongly explicit construction does not give the full graph, but rather the specified neighbor of a given vertex in the graph.

Application: deterministic error reduction

Let \mathcal{A} be a randomized algorithm with 1 -sided error for a decision problem \mathcal{P}, which takes random n-bit string r and x as inputs.
Let's say \mathcal{A} runs in time T.
For instance, if the input x is a number, \mathcal{P} could be "is x prime?", and \mathcal{A} could be the Miller-Rabin primality test.

If $x \in \mathcal{P}, \operatorname{Pr}(\mathcal{A}$ says YES $)=1$.
If $x \notin \mathcal{P}, \mathcal{A}$ is still correct with high prob, i.e. $\operatorname{Pr}(\mathcal{A}$ says YES $) \leq .01$.
Idea for reducing error: Repeat the algorithm d times, with independent random n-bit strings r_{1}, \ldots, r_{d}.

- Runs in $d T+O(n)$ time, Uses $d n$ random bits, Error prob. $\leq .01^{d}$

Deterministic error reduction cont.

Imagine we want to decrease the error of \mathcal{A}, but random bits are expensive.
Use a strongly explicit bipartite expander. Say we have an expander according to [Bas81], where $|L|=|R|=2^{n}$ (!)

Name vertices in L and R by n-bit strings, rely on strongly explicit property.

$$
|N(S)| \geq 0.8 \cdot d \cdot|S|
$$

Reducing error: Pick $\ell \in L$ uniformly at random using n random bits. Let r_{1}, \ldots, r_{d} be neighbors of ℓ in R, accessible in poly (n) time.

- Runs in poly $(n)+d T$ time
- Uses n random bits
- Error probability $\leq \frac{.02}{d}$ (proof coming up!)

Deterministic error reduction conclusion

Claim: Using a bipartite expander, the error probability for \mathcal{A} is $\leq \frac{.02}{d}$.
For any input x, \mathcal{A} is wrong on at most 1% of random seeds. Let $B_{x} \subset R$ be these "bad strings" in R causing \mathcal{A} to be incorrect.

Let $S \subset L$ be the "bad" choices for $\ell \in L$ - those for which $N(\ell) \subseteq B_{x}$.
Claim 2: $|S| \leq \frac{.02}{d} 2^{n}$.
For the sake of contradiction, assume $|S| \geq \frac{.02}{d} 2^{n}$. Let $S^{\prime} \subseteq S$ such that $\left|S^{\prime}\right|=\frac{.02}{d} 2^{n}$. By the expander properties:

$$
\left|N\left(S^{\prime}\right)\right| \geq 0.8 d\left|S^{\prime}\right|=.8 \cdot .02 \cdot 2^{n}=0.016 \cdot 2^{n}>0.01 \cdot 2^{n}=\left|B_{x}\right|
$$

This is a contradiction, because there exists $v \in N\left(S^{\prime}\right)$ s.t. $v \notin B_{x}$, for which \mathcal{A} will answer NO.
Thus, the error probability of $\mathcal{A} \leq \frac{.02}{d} . \quad \square$

Laplacian of a Graph

- Laplacian: $L=D-A$
- Normalized Laplacian (of a d-regular graph): $L_{G}=D^{-1 / 2} L D^{-1 / 2}=I-\frac{1}{d} A=I-K$
- $\lambda_{i}\left(L_{G}\right)=1-\lambda_{i}(G)\left(\lambda_{1}(G)\right.$: largest eigenvalue of $\left.G\right)$
- L_{G} is PSD. (diagonally dominant and symmetric)
- Smallest Eigenvalue $\lambda_{1}\left(L_{G}\right)=0$. Alternatively $\lambda_{1}(G)=1$.
- Number of connected components in the graph $=$ dimension of the nullspace of L_{G}
- $\lambda_{2}\left(L_{G}\right)>0 / \lambda_{2}(G)<1$ iff graph is connected.

Cheeger's inequality and Spectral Expansion

- Cheeger's inequality: $\lambda_{2}\left(L_{G}\right) / 2 \leq \Phi_{G} \leq \sqrt{2 \lambda_{2}\left(L_{G}\right)}$
- Can define spectral expansion in terms of $\lambda_{2}\left(L_{G}\right)$ or $\lambda_{2}(G)$
- Similar relationship of $\lambda_{2}(G)$ to vertex expansion exists.

Recall

- Edge Expansion: $\forall|S| \leq \frac{n}{2}, \quad \operatorname{Pr}_{u \sim v}[u \in S, v \notin S] \geq \epsilon$
- Conductance: $\Phi_{G}=\min _{0 \leq|S| \leq n / 2} \Phi(S)$
- Vertex Expansion: $\forall|S| \leq \frac{n}{2}, \quad|N(S)| \geq \epsilon \cdot d|S|$

Spectral Expanders

- Definition: An (n, d, ϵ) spectral expander is an n-vertex, d-regular graph with $\lambda_{1}\left(L_{G}\right) \geq \epsilon$.

Strongly explicit construction

(Gabber and Galil[1981]): Let G be a graph with vertex set $V=\mathbb{Z}_{m}^{2}$ and edge set E in which we connect (x, y) to:

- $(x \pm y, y)$,
- $(x \pm(y+1), y)$,
- $(x, x \pm y)$,
- $(x, y \pm(x+1))$

Eight neighbors for each vertex, can compute in $O(\log n)$ time. ($m^{2}, 8, \epsilon$) expander with: $\epsilon \approx .1$

Random d-regular graphs

- In a random n - vertex, d - regular graph G, with probability $\geq 1-o_{n}(1)$, for all $i \geq 2$, we have

$$
\lambda_{i}(G) \leq \frac{2 \sqrt{d-1}}{d}+o_{n}(1)
$$

- Would like to get graphs with second eigenvalue close to this
- Certain expander graphs achieve this bound (for certain values of d): Ramanujan Graphs

Ramanujan Graphs

Definition

A connected d regular graph with n vertices that satisfies $\lambda_{2}(G) \leq \frac{2 \sqrt{d-1}}{d}$
Some interesting facts:

- Explicit/strongly explicit constructions exists for certain values of d
- Margulis, Lubotzky--Phillips--Sarnak'88: Infinite sequences of Ramanujan graphs exist for $d=$ prime +1 !
- The constant $2 \frac{\sqrt{d-1}}{d}$ in the definition of Ramanujan graphs is asymptotically sharp i.e. $\forall d$ and $\epsilon>0, \exists n$ s.t. all d regular graphs with at least n vertices satisfy $\lambda_{2}(G)>2 \frac{\sqrt{d-1}}{d}-\epsilon$. [Alon-Bopanna bound]
- Spectral gap is almost as large as possible!
- Ramanujan graphs are essentially the best possible expander graphs!

Quasi-Random Properties of Ramanujan Graphs

Expander Mixing Lemma/ Discrepancy Property

Let G be a d-regular Ramanujan graph. For $X, Y \subseteq V$, let $e(X, Y)=|\{(x, y) \in X \times Y:(x, y),(x y) \in E(G)\}|$. Then,

$$
\left|e(X, Y)-\frac{d}{n}\right| X||Y|| \leq 2 \sqrt{d|X| Y| |}
$$

(Edges of the graph are evenly distributed)

- $\lambda_{1}=d$ and $\lambda_{2}<2 \sqrt{d}$.
- $\bar{e}_{1}=\frac{1}{\sqrt{n}}[1,1, \cdots 1]$
- For $X \subset V$, define $f_{X}(a)= \begin{cases}1, & \text { if } a \in X \\ 0, & \text { otherwise }\end{cases}$
- e(X,Y) $=\left\langle f_{X}, G f_{Y}\right\rangle$
- Let $f_{X}=\sum_{i} a_{i} \bar{e}_{i}$ and $f_{Y}=\sum_{j} b_{j} \bar{e}_{j}$
- Let $a_{1}=\left\langle f_{X}, \bar{e}_{1}\right\rangle=\frac{|X|}{\sqrt{n}}$ and $b_{1}=\frac{|Y|}{\sqrt{n}}$

$$
\begin{aligned}
\left|e(X, Y)-\frac{d}{n}\right| X||Y|| & =\left|\left\langle f_{X}, G f_{Y}\right\rangle-\lambda_{1} a_{1} b_{1}\right| \\
& \leq\left|\lambda_{2}\right| \sum_{i=2}^{n}\left|a_{i} b_{i}\right| \\
& \leq\left|\lambda_{2}\right|\left\|f_{X}\right\|_{2}\left\|f_{Y}\right\|_{2} \leq 2 \sqrt{d|X| Y| |}
\end{aligned}
$$

Application: Largest Eigenvalue of $\{0,1\}-$ PSD matrix

- Let A be a binary (with $\{0,1\}$) entries PSD matrix.
- Need to find its largest eigenvalue λ_{1}
- Let G be the adjacency matrix of an n vertex d regular expander graph where $d=O\left(\frac{1}{\epsilon^{2}}\right)$
- Find $R=G \cap A$.
- Let $c(R)$ be the largest connected component of R. Then,

$$
\lambda_{1}-\epsilon n \leq c(G) \leq \lambda_{1}
$$

References

- Ryan O'Donnell. Lecture on expanders : https://www.youtube.com/watch?v=bON1IjZRJhA
- Daniel A. Spielman. Spectral and Algebraic Graph Theory: http://cs-www.cs.yale.edu/homes/spielman/sagt/sagt.pdf
- Fan Chung and Ronald Graham. Sparse Quasi-Random Graphs: https://mathweb.ucsd.edu/~fan/wp/spar.pdf

Thanks! Questions?

