Leverage Score Sampling for Function Fitting

Aarshvi Gajjar

NYU Tandon

Classical Regression Problem

• Given a data matrix $\mathbf{X} \in \mathbb{R}^{n \times k}$ and a vector representing labels, $\mathbf{y} \in \mathbb{R}^{n}$, the least squares objective is to find a vector \mathbf{w}^{*} such that:

$$\mathbf{w}^* = \arg\min_{\mathbf{w}\in\mathbb{R}^k} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|_2^2$$

- Sometimes, it is expensive to get access to all the labels
- So instead we sample $m \ll n$ rows from X using a sampling matrix $S \in \mathbb{R}^{m \times n}$ and we hope that the problem is approximately solved
- Formally, if $\tilde{\mathbf{w}} = \arg\min_{\mathbf{w} \in \mathbb{R}^k} \|\mathbf{S}\mathbf{X}\mathbf{w} \mathbf{S}\mathbf{y}\|_2^2$, then, we want:

$$\left\|\mathbf{X}\tilde{\mathbf{w}} - \mathbf{y}\right\|_{2}^{2} \in (1 \pm \varepsilon) \left\|\mathbf{X}\mathbf{w}^{*} - \mathbf{y}\right\|_{2}^{2}$$

• Sample the rows uniformly with replacement over $\left[n\right]$ and solve the Empirical Risk Minimizer

$$\min_{\mathbf{w}\in\mathbb{R}^k}\frac{1}{m}\sum_{i=1}^m (\mathbf{X}_i\mathbf{w}-\mathbf{y}_i)^2$$

- From law of large numbers, the Monte Carlo estimate converges to the expected loss.
- However, the variance of this estimator can be very high
- If one row is orthogonal to all others, then it has to be included in the sample, making \boldsymbol{m} very large

- Method to emphasize the **important** data points such that the variance of the estimator is reduced.
- Suppose the rows of \mathbf{X} are samples generated according to the probability distribution, p.
- And, it is expensive to sample from p
- Basic Idea: Generate samples from another distribution which is easy to sample from, encourages the important data points and controls the variance.

Importance Sampling Defined

- If q is a probability density function such that $q(\mathbf{X}_i \mathbf{w}) > 0$ wherever $p(\mathbf{X}_i \mathbf{w})(\mathbf{X}_i \mathbf{w} \mathbf{y}_i)^2 > 0$, then the importance sampling algorithm involves generating $m \ll n$ samples according to q
- The estimator is:

$$\frac{1}{m} \sum_{i=1}^{m} \frac{p(\mathbf{X}_i \mathbf{w})}{q(\mathbf{X}_i \mathbf{w})} (\mathbf{X}_i \mathbf{w} - \mathbf{y}_i)^2$$
(1)

- Regression problem is to minimise (1) over $\mathbf{w} \in \mathbb{R}^k$
- Question: How to choose q?

• Define a score for each point being sampled

Definition

The leverage score, l(i) of the *i*th row of a matrix $\mathbf{X} \in \mathbb{R}^{n \times k}$ is:

$$l(i) := \max_{\beta \in \mathbb{R}^k} \frac{(\mathbf{X}\beta)_i^2}{\|\mathbf{X}\beta\|_2^2}$$

• Sample points proportional to the score

Theorem

Given a data matrix, $\mathbf{X} \in \mathbb{R}^{n \times k}$ and a vector $\mathbf{y} \in \mathbb{R}^n$. Let $\mathbf{w}^* = \arg \min_{\mathbf{w} \in \mathbb{R}^k} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|_2$. For any $\varepsilon < 1$, suppose \mathbf{S} is a sampling matrix that selects $m = O\left(d\log d + \frac{d}{\delta\varepsilon}\right)$ rows of \mathbf{X} via leverage score sampling.

• Let $\tilde{\mathbf{w}} = \arg\min_{\mathbf{w} \in \mathbb{R}^k} \|\mathbf{S}\mathbf{X}\mathbf{w} - \mathbf{S}\mathbf{y}\|_2$

• Then, w.p.
$$\geq 1 - \delta$$
,
 $\left\| \mathbf{X} \mathbf{w}^* - \mathbf{y} \right\|_2^2 \in (1 \pm \varepsilon) \| \mathbf{X} \tilde{\mathbf{w}} - \mathbf{y} \|_2^2$

- Thus leverage score sampling is powerful for active regression
- What if we want to approximately solve $\min_{\mathbf{w} \in \mathbb{R}^k} \|p(\mathbf{X}\mathbf{w}) \mathbf{y}\|_2$, where p is a polynomial of degree d?

Generalisation for Active Linear Regression

- Suppose we are given access to s samples of a function $g:\mathbb{R}^k\to\mathbb{R}$
- Let \mathcal{F} be a function class containing functions f that map \mathbb{R}^k to \mathbb{R} .
- Let p be some density over \mathbb{R}^k
- We want to find a function $\tilde{f} \in \mathcal{F}$ such that:

$$\int_{\mathbb{R}^k} (\tilde{f}(x) - g(x))^2 p(x) dx \in (1 \pm \varepsilon) \min_{f \in \mathcal{F}} \int_{\mathbb{R}^k} (f(x) - g(x))^2 p(x) dx$$

where $\varepsilon > 0$ is fixed.

Definition (General Leverage Scores (Sensitivity))

Let \mathcal{F} be a family of functions, $f : \mathbb{R}^k \to \mathbb{R}$ and let p be a probability density over \mathbb{R}^k . The leverage score of any $\mathbf{x} \in \mathbb{R}^k$ is given by

$$\pi_{\mathcal{F}}(\mathbf{x}) = \sup_{f \in \mathcal{F}} \frac{f(\mathbf{x})^2 p(\mathbf{x})}{\int_{\mathbf{x} \in \mathbb{R}^k} f^2(\mathbf{x}) p(\mathbf{x}) d\mathbf{x}}$$

• The total sensitivity, $T_{\mathcal{F}} = \int_{\mathbb{R}^k} \tau_{\mathcal{F}}(\mathbf{x}) d(\mathbf{x})$ represents the number of samples required to fit a function.

- We aim to find an upper bound on the total sensitivity of function classes of high dimensional functions
- Example. ReLU, polynomials
- Finally applying this to get sample complexity for nonlinear active regression