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Classical Regression Problem

e Given a data matrix X € R"** and a vector representing labels, y € R", the least squares
objective is to find a vector w* such that:

w* = arg min || Xw — yH%
weRk

® Sometimes, it is expensive to get access to all the labels

® So instead we sample m < n rows from X using a sampling matrix S € R™*"™ and we
hope that the problem is approximately solved

* Formally, if W = arg miny, gt [|SXw — Sy||3, then, we want:

IXw —y|2 € (1) |Xw* -yl
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Naive Method

Sample the rows uniformly with replacement over [n| and solve the Empirical Risk
Minimizer

1l 2
it 2K =)

i=1

From law of large numbers, the Monte Carlo estimate converges to the expected loss.

However, the variance of this estimator can be very high

If one row is orthogonal to all others, then it has to be included in the sample, making m
very large
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Importance Sampling

® Method to emphasize the important data points such that the variance of the estimator
is reduced.

® Suppose the rows of X are samples generated according to the probability distribution, p.
® And, it is expensive to sample from p

® Basic Idea: Generate samples from another distribution which is easy to sample from,
encourages the important data points and controls the variance.
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Importance Sampling Defined

If ¢ is a probability density function such that ¢(X;w) > 0 wherever
p(X;w)(X;w —y;)? > 0, then the importance sampling algorithm involves generating
m < n samples according to ¢

® The estimator is:

Regression problem is to minimise (1) over w € R¥

Question: How to choose ¢?
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Leverage Score Sampling

® Define a score for each point being sampled

Definition

The leverage score, (i) of the ith row of a matrix X € R™*¥ is:

(XB)?

= max 2
BER* || X B]|5

® Sample points proportional to the score
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Known Results

Given a data matrix, X € R™** and a vectory € R". Let w* = arg min,cgx || Xw — y||,. For
any € < 1, suppose S is a sampling matrix that selects m = O (d logd + %) rows of X via
leverage score sampling.
® et w = arg min, g« ||SXw — Sy||,
® Then, w.p. > 1—9,
[Xw* —y]|; € (1 +&)|XW - y]3

® Thus leverage score sampling is powerful for active regression

® What if we want to approximately solve ming, cpx Hp(Xw) — yH2, where p is a polynomial
of degree d?
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Generalisation for Active Linear Regression

Suppose we are given access to s samples of a function ¢ : R¥ — R
Let F be a function class containing functions f that map R* to R.
Let p be some density over R¥

We want to find a function f € F such that:

/ (f(x) = g(x))’p(z)dz € (1 £¢) min/ (f(z) = g(2))*p(x)dw
RE Rk

feF

where € > 0 is fixed.
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Sensitivity and Sampling

Definition (General Leverage Scores (Sensitivity))

Let F be a family of functions, f : R¥ — R and let p be a probability density over R*¥. The
leverage score of any x € R¥ is given by

L Je9P
() = S T A P

® The total sensitivity, Tr = ka Tr(x)d(x) represents the number of samples required to
fit a function.
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® We aim to find an upper bound on the total sensitivity of function classes of high
dimensional functions

® Example. RelLU, polynomials

® Finally applying this to get sample complexity for nonlinear active regression
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