Leverage Score Sampling for Function Fitting

Aarshvi Gajjar

NYU Tandon

Classical Regression Problem

- Given a data matrix $\mathbf{X} \in \mathbb{R}^{n \times k}$ and a vector representing labels, $\mathbf{y} \in \mathbb{R}^{n}$, the least squares objective is to find a vector \mathbf{w}^{*} such that:

$$
\mathbf{w}^{*}=\arg \min _{\mathbf{w} \in \mathbb{R}^{k}}\|\mathbf{X} \mathbf{w}-\mathbf{y}\|_{2}^{2}
$$

- Sometimes, it is expensive to get access to all the labels
- So instead we sample $m \ll n$ rows from \mathbf{X} using a sampling matrix $\mathbf{S} \in \mathbb{R}^{m \times n}$ and we hope that the problem is approximately solved
- Formally, if $\tilde{\mathbf{w}}=\arg \min _{\mathbf{w} \in \mathbb{R}^{k}}\|\mathbf{S X w}-\mathbf{S y}\|_{2}^{2}$, then, we want:

$$
\|\mathbf{X} \tilde{\mathbf{w}}-\mathbf{y}\|_{2}^{2} \in(1 \pm \varepsilon)\left\|\mathbf{X} \mathbf{w}^{*}-\mathbf{y}\right\|_{2}^{2}
$$

Naive Method

- Sample the rows uniformly with replacement over $[n]$ and solve the Empirical Risk Minimizer

$$
\min _{\mathbf{w} \in \mathbb{R}^{k}} \frac{1}{m} \sum_{i=1}^{m}\left(\mathbf{X}_{i} \mathbf{w}-\mathbf{y}_{i}\right)^{2}
$$

- From law of large numbers, the Monte Carlo estimate converges to the expected loss.
- However, the variance of this estimator can be very high
- If one row is orthogonal to all others, then it has to be included in the sample, making m very large

Importance Sampling

- Method to emphasize the important data points such that the variance of the estimator is reduced.
- Suppose the rows of \mathbf{X} are samples generated according to the probability distribution, p.
- And, it is expensive to sample from p
- Basic Idea: Generate samples from another distribution which is easy to sample from, encourages the important data points and controls the variance.

Importance Sampling Defined

- If q is a probability density function such that $q\left(\mathbf{X}_{i} \mathbf{w}\right)>0$ wherever $p\left(\mathbf{X}_{i} \mathbf{w}\right)\left(\mathbf{X}_{i} \mathbf{w}-\mathbf{y}_{i}\right)^{2}>0$, then the importance sampling algorithm involves generating $m \ll n$ samples according to q
- The estimator is:

$$
\begin{equation*}
\frac{1}{m} \sum_{i=1}^{m} \frac{p\left(\mathbf{X}_{i} \mathbf{w}\right)}{q\left(\mathbf{X}_{i} \mathbf{w}\right)}\left(\mathbf{X}_{i} \mathbf{w}-\mathbf{y}_{i}\right)^{2} \tag{1}
\end{equation*}
$$

- Regression problem is to minimise (1) over $\mathbf{w} \in \mathbb{R}^{k}$
- Question: How to choose q ?

Leverage Score Sampling

- Define a score for each point being sampled

Definition

The leverage score, $l(i)$ of the i th row of a matrix $\mathbf{X} \in \mathbb{R}^{n \times k}$ is:

$$
l(i):=\max _{\beta \in \mathbb{R}^{k}} \frac{(\mathbf{X} \beta)_{i}^{2}}{\|\mathbf{X} \beta\|_{2}^{2}}
$$

- Sample points proportional to the score

Known Results

Theorem

Given a data matrix, $\mathbf{X} \in \mathbb{R}^{n \times k}$ and a vector $\mathbf{y} \in \mathbb{R}^{n}$. Let $\mathbf{w}^{*}=\arg \min _{\mathbf{w} \in \mathbb{R}^{k}}\|\mathbf{X w}-\mathbf{y}\|_{2}$. For any $\varepsilon<1$, suppose \mathbf{S} is a sampling matrix that selects $m=O\left(d \log d+\frac{d}{\delta \varepsilon}\right)$ rows of \mathbf{X} via leverage score sampling.

- Let $\tilde{\mathbf{w}}=\arg \min _{\mathbf{w} \in \mathbb{R}^{k}}\|\mathbf{S X w}-\mathbf{S y}\|_{2}$
- Then, w.p. $\geq 1-\delta$,

$$
\left\|\mathbf{X} \mathbf{w}^{*}-\mathbf{y}\right\|_{2}^{2} \in(1 \pm \varepsilon)\|\mathbf{X} \tilde{\mathbf{w}}-\mathbf{y}\|_{2}^{2}
$$

- Thus leverage score sampling is powerful for active regression
- What if we want to approximately solve $\min _{\mathbf{w} \in \mathbb{R}^{k}}\|p(\mathbf{X w})-\mathbf{y}\|_{2}$, where p is a polynomial of degree d ?

Generalisation for Active Linear Regression

- Suppose we are given access to s samples of a function $g: \mathbb{R}^{k} \rightarrow \mathbb{R}$
- Let \mathcal{F} be a function class containing functions f that map \mathbb{R}^{k} to \mathbb{R}.
- Let p be some density over \mathbb{R}^{k}
- We want to find a function $\tilde{f} \in \mathcal{F}$ such that:

$$
\int_{\mathbb{R}^{k}}(\tilde{f}(x)-g(x))^{2} p(x) d x \in(1 \pm \varepsilon) \min _{f \in \mathcal{F}} \int_{\mathbb{R}^{k}}(f(x)-g(x))^{2} p(x) d x
$$

where $\varepsilon>0$ is fixed.

Sensitivity and Sampling

Definition (General Leverage Scores (Sensitivity))

Let \mathcal{F} be a family of functions, $f: \mathbb{R}^{k} \rightarrow \mathbb{R}$ and let p be a probability density over \mathbb{R}^{k}. The leverage score of any $\mathbf{x} \in \mathbb{R}^{k}$ is given by

$$
\tau_{\mathcal{F}}(\mathbf{x})=\sup _{f \in \mathcal{F}} \frac{f(\mathbf{x})^{2} p(\mathbf{x})}{\int_{\mathbf{x} \in \mathbb{R}^{k}} f^{2}(\mathbf{x}) p(\mathbf{x}) d \mathbf{x}}
$$

- The total sensitivity, $\mathrm{T}_{\mathcal{F}}=\int_{\mathbb{R}^{k}} \tau_{\mathcal{F}}(\mathbf{x}) d(\mathbf{x})$ represents the number of samples required to fit a function.

Our work

- We aim to find an upper bound on the total sensitivity of function classes of high dimensional functions
- Example. ReLU, polynomials
- Finally applying this to get sample complexity for nonlinear active regression

