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PROBLEM STATEMENT

Given n data points x1, . . . , xn ∈ Rd, a label vector y ∈ Rn and f being
a classification function

Let x∗ = argminx∈Rd

∑n
i=1 f (⟨xi, x⟩ · yi) and F(x) =

∑n
i=1 f (⟨xi, x⟩ · yi),

Goal: Find a subset of x′1, . . . , x′r points along with corresponding
weights w1, . . . ,wr s.t. for some small k, we have:

F(x′) ≤ k · F(x∗)

where x′ = argminx∈Rd

∑r
j=1 wj · f (⟨x′j , x⟩ · y′j).
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CORESETS

Coresets are small subsets of data, often achieved by subsampling
from a properly designed distribution.

Deficiencies of coreset constructions:

1. Rely on regularization to obtain small coresets,

2. Usually require random access to data,

3. Require at least two passes over the data (one for
calculating/approximating probabilities and the other for
subsampling and collecting data),

4. Usually only work in insertion streams, where the data is
presented row by row.
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DATA OBLIVIOUS SKETCHING: WHAT IS A LINEAR SKETCH?

Initialize the data matrix A ∈ Rn×d to be a all-zero matrix, where n is
large. We have a sequence of updates (i, j, v), each causing a
change Aij = Aij + v. Updates v of A can be negative.

This is referred to as the turnstile model, which is the most flexible
dynamic setting.

A linear sketch is an algorithm which computes SA as A is updated,
where S ∈ Rm×n (m ≪ n).

Linear sketches support operations such as addition, subtracting and
scaling of databases Aj efficiently, since SA = S

∑
j αjAj =

∑
j αjSAj.

4



Introduction Sketching for Hinge Loss

Advantages of using Oblivious Sketching:

1. Works well with highly unstructured and arbitrarily distributed
data,

2. Allows efficient applications in a single pass of data,

3. Applicable to high velocity streams, since any update can be
calculated in O(1) time,

4. Linear sketches support several useful operations on the data.
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OBLIVIOUS SKETCHING FOR LOGISTIC LOSS

First data oblivious sketch for logistic regression [A. Munteanu, S.
Omlor, D. P. Woodruff (2021)]:

• The sketch can be computed in input sparsity time in one pass
over a turnstile data stream,

• It reduces the size of a d-dimensional data set from n to
poly(µd log n) weighted points (where µ is a parameter capturing
the complexity of compressing the data),

• It obtains a O(log n) approximation to the original problem,

• Can obtain a O(1) approximation with slight modifications.
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OVERVIEW OF THE ALGORITHM

In logistic regression we are given a data matrix Q ∈ Rn×d and a label
vector L ∈ {−1, 1}n. Let data matrix A ∈ Rn×d where each row ai for
i ∈ [n] is defined as ai := −liqi. Our goal is to find x ∈ Rd that
minimizes the logistic loss given by

f (Ax) =
∑
i∈[n]

ln(1 + exp(aix))
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OVERVIEW OF THE ALGORITHM CONT.

1. Logistic regression loss function can be approximated as
f (Ax) ≈ G+(Ax) + f ((Ax)−) which can be handled separately
while losing only an approximation factor of 2, where we define:

• G+(y) :=
∑

yi≥0 yi to be the sum of positive entries of y,
• (Ax)− the vector Ax with all positive entries replaced with 0

2. The first part G+(Ax) can be approximated by the collection of
sketches (S0, . . . ,Shmax )

3. The second part f ((Ax)−) can be approximated by a uniform
sample (T)
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OVERVIEW OF THE ALGORITHM

In the classification problem we are given a data matrix Q ∈ Rn×d and
a label vector L ∈ {−1, 1}n. Let data matrix A ∈ Rn×d where each row
ai for i ∈ [n] is defined as ai := −liqi. Our goal is to find x ∈ Rd that
minimizes the hinge loss given by

H =
∑
i∈[n]

max(0, 1 + aix) =
∑

aix≥−1

aix + 1 =
∑

y(i)≥−1

y(i)
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APPROXIMATING LOSS H

We will approximate H using a matrix S consisting of sketching
matrices S0, . . . ,Slmax

where the sketch Sl on each level is presented
only a fraction of all coordinates.

This approach is based on a combination of subsampling at different
levels and hashing the coordinates assigned to the same level
uniformly into a small number of buckets.

Collisions are handled by summing all entries that are mapped to the
same level and we use a CountMin-sketch algorithm to recover large
enough entries.
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ALGORITHM

Let b be the number of buckets in each level. We let lmax = 10 log( n
ϵ ).

So each Sl ∈ R(lmaxb)×n for l ∈ [lmax].

For entry y(j) for any j ∈ [n]

1. y(j) is assigned to level l w.p. 1
β2l where β = 2 − 2−lmax

2. insert y(j) assigned to level l in a CMS datastructure called Cl

with m buckets and using t hash functions (b = mt).
3. for each level compute a list of all ’recovered’ elements Rl with

|y(j)−ỹ(j)|
y(j) ≤ c · ϵ for some small constant c where ỹ(j) are the

approximated values by CMS for all y(j) in level l
4. if assigned to level l, y(j) gets the weight:

• wj = β2l if it is recovered (y(j) ∈ Rl)

• wj = 0 otherwise

Approximate: H =
∑n

j=1 y(j) by H̃ = 1
lmax

∑n
j=1 wj · ỹ(j)

11



Introduction Sketching for Hinge Loss

ALGORITHM CONT.
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PRELIMINARIES

Goal of the sketch:

• preserves big entries y(i)
• for smaller entries it finds a set of representatives which are in

buckets of appropriate weight and are large in contrast to the
remaining entries

We will show this by splitting entries y(i) into weight classes and
deriving bounds for the contribution of each weight class.

Weight classes: For q ∈ N we define
Bq = {y(j) | 2−qH < y(j) ≤ 2−q+1H} where qmax = log( n

ϵ ).

Count-Min Sketch guarantees: Let x denote a signal vector. By
setting m = 2

ϵ , t = log( 1
δ ) we have Pr[x̃i − xi ≥ ϵ · ∥x∥1] ≤ ( 1

mϵ )
t ≤ δ

where m denotes the number of buckets and t the number of pairwise
independent hash functions.
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ANALYSIS

Theorem: E[ 1
lmax

∑n
j=1 wj · ỹ(j)] = (1 + ϵ)E[

∑n
j=1 y(j)]

Proof: E[ 1
lmax

∑n
j=1 wj · ỹ(j)] =

1
lmax

n∑
j=1

lmax∑
l=0

1
β2l ·β2l·Pr[y(j)is recovered given it’s assigned to level l]·ỹ(j)

Let’s compute∑n
j=1

∑lmax

l=0 Pr[y(j)is recovered given it’s assigned to level l] · ỹ(j)

Let y(j) ∈ Bq then y(j) ∈ (2−qH, 2−q+1H]. Assume y(j) is assigned to
level l. We know that in expectation we have n

β2l other elements in
this level. Lets denote the sum of these elements as
Sl =

∑n/β2l

y(i) in level l y(i) ≈ 1
β2l · H.
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ANALYSIS CONT.

For y(j) to be recovered correctly we must have that |y(j)−ỹ(j)|
y(j) ≤ c · ϵ.

Our CMS datastructure for level l allows us to approximate
ỹ(j)− y(j) ≤ ϵ · Sl with high probability. So we have that:

|y(j)− ỹ(j)|
y(j)

≤ c · ϵ =⇒ ϵ · Sl

y(j)
≤ c · ϵ (1)

y(j) ≥ Sl

c
=⇒ 2−q+1H ≥ 1

c
· ( 1

β · 2l · H) (2)

=⇒ l − q ≥ log(
1

cβ
)− 1 (3)

=⇒ l ≥ q − K (4)

for some constant K. Hence∑n
j=1

∑lmax

l=0 Pr[y(j)is recovered given it’s assigned to level l] · ỹ(j) ≈∑n
j=1(lmax − q) · ỹ(j)
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ANALYSIS CONT.

Thus we have that

E[
1

lmax

n∑
j=1

wj · ỹ(j)] =
1

lmax

n∑
j=1

(lmax − q) · ỹ(j) (5)

=
lmax − q

lmax

n∑
j=1

ỹ(j) (6)

=
9 log n

ϵ

10 log n
ϵ

· (
n∑

j=1

y(j) + cϵy(j)) (7)

= 0.9(1 + cϵ) ·
n∑

j=1

y(j) (8)

= 0.9(1 + cϵ) · H (9)
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Thank you!
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